Пропилен
Полипропилен — полимер пропилена (пропена).
Получение.
Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов, например, катализаторов Циглера-Натта (например, смесь TiCl4 и AlR3): nCH2=CH(CH3) → [-CH2-CH(CH3)-]nПараметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.
Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4-0,5 г/см³. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.
Молекулярное строение.
По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический. Изотактический и синдиотактический полипропилены относятся к т.н. стереорегулярным полимерам. Изотактический полипропилен — полимер, в котором метильные группы направлены в одну сторону от воображаемой плоскости основной цепи; синдиотактический — метильные группы строго чередуются; атактический — метильные группы расположены случайным образом.
Физико-механические свойства.
В отличие от полиэтилена, полипропилен менее плотный (плотность 0,90 г/см3, что является наименьшим значением вообще для всех пластмасс), более твёрдый (стоек к истиранию), более термостойкий (начинает размягчаться при 140°C, температура плавления 175°C), почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду (чувствительность понижается при введении стабилизаторов).
Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.Показатели основных физико-механических свойств полипропилена приведены в таблице:
Физико-механические свойства полипропилена | |
Плотность, г/см3 | 0,90—0,91 |
Разрушающее напряжение при растяжении, кгс/см2 | 250—400 |
Относительное удлинение при разрыве, % | 200—800 |
Модуль упругости при изгибе, кгс/6700—11900 |
|
Предел текучести при растяжении, кгс/см2 | 250—350 |
Относительно удлинение при пределе текучести, % | 10—20 |
Ударная вязкость с надрезом, кгс·см/см2 | 33—80 |
Твердость по Бринеллю, кгс/мм2 | 6,0—6,5 |
Физико-механические свойства полипропилена разных марок приведены в таблице:
Физико-механические свойства полипропилена различных марок | |||||||||
Показатели / марка | 01П10/002 | 02П10/003 | 03П10/005 | 04П10/010 | 05П10/020 | 06П10/040 | 07П10/080 | 08П10/080 | 09П10/200 |
Насыпная плотность, кг/л, не менее | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 | 0,47 |
Показатель текучести расплава, г/10 мин | ≤0 | 0,2—0,4 | 0,4—0,7 | 0,7—1,2 | 1,2—3,5 | 3—6 | 5—15 | 5—15 | 15—25 |
Относительное удлинение при разрыве, %, не менее | 600 | 500 | 400 | 300 | 300 | - | - | - | - |
Предел текучести при разрыве, кгс/см2, не менее | 260 | 280 | 270 | 260 | 260 | - | - | - | - |
Стойкость к растрескиванию, ч, не менее | 400 | 400 | 400 | 400 | 400 | - | - | - | - |
Характеристическая вязкость в декалине при 135ºC, 100 мл/г | - | - | - | - | - | 2,0—2,4 | 1,5—2,0 | 1,5—2,0 | 0,5—15 |
Содержание изотактической фракции, не менее | - | - | - | - | - | 95 | 93 | 95 | 93 |
Содержание атактической фракции, не более | - | - | - | - | - | 1,0 | 1,0 | 1,0 | 1,0 |
Морозостойкость, ºC, не выше | -5 | -5 | -5 | - | - | - | - | - | - |
Химические свойства.
Полипропилен химически стойкий материал. Заметное воздействие на него оказывают только сильные окислители — хлорсульфоновая кислота, дымящая азотная кислота, галогены, олеум. Концентрированная 58%-ная серная кислота и 30%-ная перекись водорода при комнатной температуре действуют незначительно. Продолжительный контакт с этими реагентами при 60ºC и выше приводит к деструкции полипропилена.
В органических растворителях полипропилен при комнатной температуре незначительно набухает. Выше 100ºC он растворяется в ароматических углеводородах, таких, как бензол, толуол. Данные о стойкости полипропилена к воздействию некоторых химических реагентов приведены в таблице.
Химическая стойкость полипропилена | |||
Среда | Температура, °C | Изменение массы, % | Примечание |
Продолжительность выдержки образца в среде реагента 7 суток | |||
Азотная кислота, 50%-ная | 70 | -0,1 | Образец растрескивается |
Натр едкий, 40%-ный | 70 | Незначительное |
|
90 | |||
Соляная кислота, конц. | 70 | +0,3 |
|
90 | +0,5 | ||
Продолжительность выдержки образца в среде реагента 30 суток | |||
Азотная кислота, 94%-ная | 20 | -0,2 | Образец хрупкий |
Ацетон | 20 | +2,0 |
|
Бензин | 20 | +13,2 | |
Бензол | 20 | +12,5 | |
Едкий натр, 40%-ный | 20 | Незначительное | |
Минеральное масло | 20 | +0,3 | |
Оливковое масло | 20 | +0,1 | |
Серная кислота,80%-ная | 20 | Незначительное | Слабое окрашивание |
Серная кислота,98%-ная | 20 | >> |
|
Соляная кислота, конц. | 20 | +0,2 | |
Трансформаторное масло | 20 | +0,2 |
Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации.
Полипропилен меньше, чем полиэтилен подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-ном водном растворе эмульгатора ОП-7 при 50ºC для полипропилена с показателем текучести расплава 0,5-2,0 г/10 мин, находящегося в напряженном состоянии, более 2000 ч.
Полипропилен — водостойкий материал. Даже после длительного контакта с водой в течение 6 месяцев (при комнатной температуре) водопоглощение полипропилена составляет менее 0,5%, а при 60ºС — менее 2%.
Теплофизические свойства.
Полипропилен имеет более высокую температуру плавления, чем полиэтилен, и соответственно более высокую температуру разложения. Чистый изотактический полипропилен плавится при 176ºC. Максимальна температура эксплуатации полипропилена 120-140ºС. Все изделия из полипропилена выдерживают кипячение, и могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств.Превосходя полиэтилен по теплостойкости, полипропилен уступает ему по морозостойкости. Его температура хрупкости (морозостойкости) колеблется от -5 до -15ºС. Морозостойкость можно повысить введением в макромолекулу изотактического полипропилена звеньев этилена (например, при сополимеризации пропилена с этиленом).Показатели основных теплофизических свойств полипропилена приведены в таблице:
Теплофизические свойства полипропилена | |
Температура плавления, ºC | 160—170 |
Теплостойкость по методу НИИПП, ºC | 160 |
Удельная теплоёмкость (от 20 до 60ºС), кал/(г·ºC) | 0,46 |
Термический коэффициент линейного расширения (от 20 до 100ºC), 1/ºC | 1,1·10-4 |
Температура хрупкости, ºC | От -5 до -15 |
Электрические свойства.
Показатели электрических свойств полипропилена приведены в таблице:
Электрические свойства полипропилена | |
Удельное объёмное электрическое сопротивление, Ом·см | 1016—1017 |
Диэлектрическая проницаемость при 106 Гц | 2,2 |
Тангенс угла диэлектрических потерь при 106 Гц | 2·10-4—5·10-5 |
Электрическая прочность (толщина образца 1 мм), кВ/мм | 28—40 |
Переработка.
Формование методами экструзии, вакуум- и пневмоформования, экструзионно-выдувного, инжекционно-выдувного, инжекционного, компрессионного формования, литье под давлением.
Применение.
Материал для производства плёнок (особенно упаковочных), тары, труб, деталей технической аппаратуры, предметов домашнего обихода, нетканых материалов и др.; электроизоляционный материал, в строительстве для виброшумо изоляции межэтажных перекрытий в системах «плавающий пол». При сополимеризации пропилена с этиленом получают некристаллизующиеся сополимеры, которые проявляют свойства каучука, отличающиеся повышенной химической стойкостью и сопротивлением старению.